Амортизаторы.

22-01-2005 16:13
47006
Рейтинг:
 
0
 
Голосов 0
Размер шрифта: A A A A
Думая о настройке подвески, надо временно абстрагироваться от брендов и рекламных кампаний. Прежде всего надо решить, какой тип амортизаторов соответствует персональному концепту вашего драйва. Академические понятия функциональности амортизатора звучат весьма определенно гасить вертикальные колебания. Кроме того, нельзя забывать и о влиянии амортизаторов на разгонную и тормозную динамику. Так, при разгоне автомобиль «приседает» назад, нагружая задние и разгружая передние колеса, снижая тем самым их сцепление с дорогой. При торможении наблюдается обратная картина. Основная нагрузка ложится на передние колеса, а задние лишь слегка притормаживают. И в той и в другой ситуации идеальным было бы состояние, при котором автомобиль сохранял бы свое нормальное «горизонтальное» положение. Примерно та же картина и при маневрировании, но здесь нагрузка смещается не по осям, а по сторонам автомобиля. Резюмируя, можно сказать, что главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Для чего колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление. Современные тенденции сводятся к тому, что, к примеру, пружины или рессоры лишь поддерживают вес автомобиля. Всю остальную работу берут на себя именно амортизаторы, как более точный инструмент. Вот почему так важен их правильный выбор.

Нюансы

При работе амортизатора необходимо предусмотреть множество различных вариантов и характеристик его функционирования. Ведь дорога имеет куда более сложное покрытие, чем в теории, да и автомобиль едет не всегда по прямой. Нюансов очень много. К примеру, несколько последовательных кочек заставляют его работать прерывисто: не успев толком распрямиться, амортизатор снова должен работать на сжатие. Нужно обеспечить и комфортное обрабатывание мелких неровностей, а на крупных избежать полного сжатия амортизатора, грозящего его пробоем. Здесь, как нигде более, важен компромисс оптимальный баланс между комфортностью и точной управляемостью. Следующая большая проблема теплообразование. И чем выше вязкость жидкости или меньше перепускные отверстия поршня, тем выше жесткость амортизатора и больше выделяется температуры при его работе. Отвод тепла очень важная задача. Но и минусовая температура доставляет немало проблем. При большом минусе масло, находящееся внутри амортизатора, может загустеть, что сделает амортизатор более жестким. Характеристики могут меняться до нескольких десятков процентов. В данном случае все решает правильный подбор масла. Далее вопрос аэрация. Поскольку в современных амортизаторах наряду с маслом присутствует и некий газ, они могут смешиваться в процессе работы, и масло превращается в пену. А поскольку пена, в отличие от масла, может быть сжата, это резко снижает эффективность демпфирования. Не менее важный вопрос расположение амортизаторов. Наиболее выгодное, с точки зрения работы, место как можно ближе к колесу, точно перпендикулярно плоскости подвески. Установка амортизатора под углом (как это часто бывает) снижает его демпфирующую эффективность (отклонение от перпендикуляра подвески +/ 50О эффективность амортизатора 68%). Все вышесказанное возводит амортизаторы с позиции банального (с точки зрения простого обывателя) автомобильного узла в сложнейшую и многогранную науку. И как в любой другой области, здесь также существуют различные конструкторские и компоновочные решения поставленных задач. По своей конструкции амортизаторы можно разделить на несколько основных типов. По архитектуре их принято делить на одно и двухтрубные. По наполнению: жидкостные (гидравлические) и газовые (с гидравлическим газовым подпором). Существуют и чисто газовые амортизаторы, в которых используется очень высокое давление газа (порядка 60 атм), но они не столь распространены.


Гидравлика

Принципиальная схема двухтрубного гидравлического амортизатора


Гидравлические двухтрубные амортизаторы некогда самый распространенный и дешевый тип демпфирующих стоек. Они довольно просты по конструкции и не столь требовательны к качеству изготовления. Состоит такой амортизатор из двух трубок: рабочей колбы, где и находится поршень, и внешнего корпуса, предназначенного для хранения избыточного масла. Поршень перемещается во внутренней колбе, пропуская масло через собственные каналы и выдавливая часть масла через клапан, находящийся снизу колбы. Этот клапан иногда называют клапаном сжатия, поскольку зачастую он отвечает за перетекание масла именно в данном такте. Эта часть жидкости просачивается в полость между колбой и внешним корпусом, где сжимает воздух, находящийся при атмосферном давлении в верхней части амортизатора. При движении назад задействуются клапана самого поршня, регулируя усилие на отбой. Длительное время именно такая конструкция превалировала на рынке амортизаторов. Но годы эксплуатации выявили ряд ее недостатков. Основным минусом является вышеупомянутая аэрация. Особенно при интенсивной работе такого амортизатора. Замена воздуха азотом (азот, будучи инертным газом, не давал деталям амортизатора корродировать, в отличие от воздуха) несколько улучшила его работу, но не решила проблему полностью. Кроме того, такие амортизаторы, имея фактически двойной корпус, хуже охлаждаются, что также отрицательно сказывается на их работе. С другой стороны, если делать их большего диаметра, удается повысить демпфирующие характеристики, одновременно снижая рабочее давление и, как следствие, температуру.


плюс газ

Принципиальная схема регулируемого двухтрубного гидравлического амортизатора с газовым подпором (на примере конструкции амортизаторов фирмы Koni)


Такие гидропневматические амортизаторы имеют схожую конструкцию и принцип действия с обычными гидравлическими двухтрубными стойками. Основное отличие в том, что вместо воздуха под атмосферным давлением находится инертный газ (чаще азот) под некоторым давлением (от 4 до 20 атм и более, в зависимости от назначения). Это и есть так называемый газовый подпор. Значение давления газа может быть различным для разных условий эксплуатации автомобиля. Кстати, чем больше диаметр патрона, тем меньшее необходимо давление газового подпора. Оно может различаться также для передних и задних амортизаторов. Чем же помогает газовый подпор? Прежде всего пресловутая аэрация. Будучи под давлением, газ не смешивается с маслом столь сильно, как в предыдущем случае, улучшая работу амортизатора. Но полностью данная проблема не решена и здесь. Кроме снижения аэрации масла, газовый подпор способствует поддержанию автомобиля, выполняя роль дополнительного демпфера. То есть, даже если пружины уже сжались бы, газовый заряд в амортизаторе удерживает правильное положение автомобиля, что положительно влияет на его управляемость. Такой конструктивный подход позволяет инженерам более гибко подходить к настройкам работы амортизатора, делая его более универсальным, чем обычные гидравлические. Общая проблема всех двухтрубных амортизаторов невозможность установки «вверх ногами». Этому мешает наполняющий их газ.


Одна труба

Регулируемый амортизатор системы CDC на автомобиле Opel Astra разработки ZF


Такие амортизаторы, как следует из названия, имеют лишь одну колбу, которая является и рабочим цилиндром, и корпусом одновременно. Работают они так же, как и двухтрубные, но в данной конструкции газ находится в том же цилиндре и отделен от масла особым плавающим поршнем (так называемая схема De Carbon). Газ (чаще азот) находится в своей камере, отделенной от масла, под высоким давлением (2030 атм). Однотрубные амортизаторы не имеют нижнего клапана сжатия, как двухтрубные. Это означает, что всю работу по управлению сопротивлением и при сжатии, и при отбое берет на себя поршень. В этой связи, несмотря на кажущуюся простоту этого узла, подбор его конструкции, размера, формы и количества отверстий является весьма сложной задачей. В целом такие амортизаторы имеют высокие рабочие характеристики. Они еще точнее держат автомобиль, способствуя лучшей управляемости. Кроме того, они эффективнее охлаждаются, поскольку воздухом обдувается непосредственно рабочий цилиндр. Плюс к этому в тех же габаритах, что и двухтрубные амортизаторы, внутренний диаметр рабочей колбы будет больше, равно как и диаметр поршня. Это означает больший объем масла, более стабильные характеристики и, опять же, лучшая теплоотдача. Но есть и минусы. В отличие от своих двухтрубных «коллег», однотрубные более уязвимы от внешних повреждений. Замятая колба однозначно приводит к замене стойки, тогда как двухтрубные имеют своего рода страховку, или, если можно так назвать, щит в виде внешнего цилиндра. К минусам можно отнести также высокую чувствительность однотрубных амортизаторов к температуре. Чем она выше, тем выше давление газового подпора и жестче работает амортизатор. С другой стороны, однотрубные стойки можно устанавливать как угодно, поскольку газ плотно отделен от масла плавающим поршнем. Кстати, именно это обстоятельство позволяет автопроизводителям, устанавливая такой амортизатор штоком вниз, снижать неподрессоренные массы. Здесь же нужно сказать и о том, что часто можно встретить амортизаторы с надетой на них пружиной. Этот вариант конструкции не относится исключительно к однотрубным стойкам. Просто так добавляется дополнительный упругий элемент, а порой он и вовсе заменяет основную пружину. Такие конструкции часто имеют возможность регулировки клиренса автомобиля. Подкручивая особую винтовую гайку на корпусе амортизатора, поддерживающую пружину снизу, можно поднять или опустить автомобиль, соответственно поджав либо отпустив пружину. Своего рода эволюцией однотрубных амортизаторов являются «однотрубники» с выносной компенсационной камерой. В них камера с газовым подпором вынесена за пределы самого амортизатора в отдельный резервуар. Такая конструкция позволяет, не увеличивая размеры самого амортизатора, увеличить объем и газа, и масла, что серьезно влияет на температурный баланс (они более эффективно охлаждаются) и стабильность характеристик. Плюс к этому имеют больший рабочий ход. Но еще больший эффект от выносной камеры в том, что на пути масла, перетекающего из основного рабочего цилиндра в допкамеру, можно установить систему клапанов, которые будут играть роль клапана сжатия, как в двухтрубной конструкции. Отделив друг от друга клапана, работающие на сжатие и отбой, можно заложить много диапазонов регулировки. Можно менять жесткость работы амортизатора для различных скоростей движения поршня, например малую, среднюю и большую. И позиций таких регулировок может быть 10 и более. Порой можно встретить и весьма экстравагантную систему с набором перепускных клапанов. Кроме большого внешнего резервуара, амортизатор облеплен несколькими трубками, на концах которых находятся регулировочные головки под гаечный ключ или отвертку. По этим трубкам масло перепускается из над и подпоршневых камер друг в друга. Регулируя эти перепускные каналы, можно получить нужные характеристики работы амортизатора на определенных режимах или, если быть точным, положениях поршня. То есть такие амортизаторы чувствительны не только к скорости перемещения поршня, но и к его позиции внутри колбы. Кроме этого, наличие большего числа трубок, по которым проходит масло, способствует лучшему его охлаждению.


Hi-Tech

Магнитная жидкость; Плоский поток (параболический профиль скорости перемещения)


Кроме примеров борьбы с явлением аэрации, были и другие варианты совершенствования конструкции таких амортизаторов. Так, например, компания Monroe, используя особые заостренные бороздки на стенках рабочей колбы, добивалась точной настройки характеристик амортизатора как для спокойной, так и для активной езды. Нужно отметить и примеры регулируемых амортизаторов, построенных по двухтрубной газонаполненной схеме. Стандартные амортизаторы также обладают возможностью регулировки, но для этого их необходимо разбирать. А есть варианты конструкций, предлагающие внешнюю регулировку жесткости. Так, фирма Koni применяет особый регулировочный штырь, проходящий через шток. Загнутый конец этого штыря, поворачивая особую эксцентриковую шайбу, создает дополнительную нагрузку на нижние пластины, позволяя настроить усилия хода отбоя. Ряд фирм осуществляют регулировку жесткости работы амортизатора схожим образом, но с использованием системы перепускных каналов в штоке, отвечающих за протекание масла, минуя дроссель. Интересный вариант регулировки жесткости предлагает фирма Kayaba. На ее амортизаторах серии AGX используется клапан, расположенный сбоку амортизатора в нижней части стойки, также регулирующий перепускание масла в обход поршня. У конструкций с выносными резервуарами возможностей настройки, как было сказано выше, куда больше, но все это механические системы, требующие остановки и ручной корректировки. Такой вариант мало подходит к современным серийным автомобилям, производители которых стремятся создать водителю и пассажирам максимальный комфорт и удобства. Для этих целей разрабатываются новые варианты амортизаторов, имеющих автоматические регулировки жесткости. Первые такие устройства представляли собой сложнейшие гидравлические системы, работающие под высоким давлением и регулирующие характеристики работы амортизаторов посредством изменения давления масла в рабочем цилиндре. В настоящее время им на смену пришли иные устройства, позволяющие изменять характеристики работы амортизаторов посредством электрических клапанов, причем как в ручном, так и в автоматическом режиме. В качестве примера можно привести систему CDC (Continuous Damping Control непрерывный контроль демпфирования) фирмы ZF, использованную на автомобиле Opel Astra. Здесь применена схема обычного двухтрубного амортизатора с газовым подпором. Регулировка усилия на сжатие и отбой осуществляется посредством двух электромагнитных клапанов, установленных сбоку в нижней части амортизатора и внутри самого поршня. Процессорное управление отслеживает множество параметров (скорость, вертикальное ускорение каждого колеса, угол поворота руля и т. д.) и регулирует жесткость по каждому из амортизаторов в отдельности. Есть и куда более изящная разработка, имеющая, на мой взгляд, весьма радужные перспективы. В прошлом году компания General Motors представила магнитные амортизаторы на моделях Cadillac Seville и Chevrolet Corvette. Совместно с корпорацией Delphi была разработана система MRC (Magnetic Ride Control магнитный контроль перемещения). В данной системе отсутствуют привычные способы регулировки усилия. Всю работу берет на себя магнито-реологическая жидкость. Эта жидкость работает как и в обычных амортизаторах, но при этом под воздействием электромагнитного поля, генерируемого специальными электромагнитными катушками, она способна менять свою вязкость. Причем менять с частотой 1000 раз/сек, и регулировка происходит фактически мгновенно. Реакция системы занимает всего одну миллисекунду. Нет ни двигателей, ни соленоидов, ни каких бы то ни было сложных клапанных систем. Такой магнитный амортизатор проще своих классических «коллег», но, к сожалению, пока не дешевле. Виной тому все еще высокая стоимость устойчивых к расслоению магнито-реологических жидкостей с достаточно широким температурным диапазоном работы. Но очень похоже, что будущее за подобной схемой. Уж очень много преимуществ. Упрощаются сам амортизатор и подвеска. Исключается необходимость в стабилизаторах поперечной устойчивости. Потрясающие возможности контроля жесткости подвески. Много плюсов.

Источник: http://www.tuning-mag.ru/Index/articles/razdel_6/article_471/content/index.shtml
    тэги не добавлены

  • 17-11-2006 23:54
    DIMA 12
    3

    Раскажите поподробнее,о установке однотрубных амортизаторров штоком вниз ,и как это повлияет на управление.

  • 27-02-2006 08:04
    Plastilin
    2

    Подскажите пожалуйста! Возможно ли поставить на ВАЗ2101 амортизаторы Koni? Если да, то какие (в смысле модель амортизатора). Заранее спасибо.

  • 11-07-2005 21:01
    dj_ara
    1

    очень познавательно и замечательно расталкованно!!! Спасибо тем прекрасным людям кто это написал...Собираю машину сам и очень интересно, что же в неё поставить!!! Круто...что ещё сказать! Спасибо!!!