Что нужно знать о ГБЦ

11-12-2010 02:07
16003
Рейтинг:
 
2
 
Голосов 2
Размер шрифта: A A A A

  В этой главе содержатся основные сведения, которые необходимы для избирательного улучшения некоторых характеристик головок блока цилиндров. Внимательно прочитав следующую информацию, вы поймете, как модифицировать головки блока цилиндров и увеличить мощность двигателя до необходимого уровня.

  Конструкция головки блока цилиндров (далее будем называть ее головкой блока или, даже, просто головкой) — это один из наиболее важных путей увеличения мощности и эффективности работы двигателя. Форма каналов, размер и конструкция клапанов, форма и толщина камер сгорания, жесткость всей отливки и другие факторы имеют важное и эффективное влияние на выходную мощность двигателя. На первый взгляд головка может показаться простым узлом, но в реальности большинство известных конструкторов гоночных двигателей затрачивает много времени и сил, чтобы понять и оптимизировать процессы, происходящие в камерах сгорания и каналах головки блока цилиндров. Некоторые считают подготовку головки блока некой "черной магией", основанной на дорогих вложениях без надежды понять эти "заклинания" и их смысл. Справедливо, что покупка набора профессионально обработанных головок довольно дорога, и после того как вы затратили значительную сумму денег, вам хочется верить, что сделано что-то необычное. Не верьте в это. Полная подготовка "гоночной" головки очень дорога, т. к. для перешлифовки и изменения формы ее поверхностей требуется значительный объем ручной работы. Не думайте, что вы сможете достичь того же самого уровня характеристик, как и квалифицированные механики, обрабатывая головки на своем кухонном столе. Всё, о чем здесь говорится, предназначено для тех, кто имеет высокооборотнстую ручную машинку для полировки и обработки и может воспроизвести некоторые из наиболее консервативных модификаций, выполняемых механиками-профессионалами, что приведет к получению лучших характеристик для "обычных" и непрофессиональных гоночных двигателей.

  Любой, кто имеет высокооборотистую ручную машинку для обработки поверхностей может воспроизвести некоторые из многих консервативных модификаций, описанных в этой главе, в результате чего будут улучшены характеристики обычных и непрофессиональных гоночных двигателей.

   Вначале может показаться, что получение дополнительной мощности от модификации головки блока должно улучшить многие характеристики двигателя, в том числе приемистость, высокую мощность на низких оборо-. тах, расширение области оборотов и т. д. К сожалению, это верно лишь частично. Некоторые модификации головки блока улучшают максимальную мощность, но они не могут помочь, а могут даже уменьшить мощность на низких оборотах или приемистость. Это совсем не означает, что тщательно подготовленная головка блока цилиндров не может дать улучшений во всех областях. Испытания головок, продемонстрировавших разносторонние улучшения, показали, что они не были достигнуты такими способами как простое использование шлифовальной машинки. Перед тем, как вы сможете аккуратно совершенствовать головки блока, вы должны решшь. чего вы будете добиваться: приемистости, экономичности, общих гоночных характеристик и т.д. Вы можете хотеть улучшить более чем одну из этих характеристик и можно в некоторой степени достичь хорошего компромисса мсждч ними Обычно средний автомобиль класса "хот-род" пренебрегает в топ или иной степени частью потенциала, который заключен в головке блока. Поэтому начнем исследование этой скрытой мощности с той части, где заканчивается впускной коллектор: впускной канал.

Впускной канал

Характеристики на низких оборотах

  Если вы работаете со стандартной головкой блока цилиндров и хотите доработать впускные каналы так, чтобы добиться хорошей мощности на шпкнх оборотах и дополнительно некоторой мощности на высоких оборотах, то хорошим известием будет то, что вам нужно делать очень мало. Ключевым элементом в этом случае будет то, что канал должен иметь малую площадь поперечного сечения, грубую текстуру поверхности и форму, обеспечивающую равномерный поток.

   Если вы планируете добиться хорошей мощности двигателя на низких оборотах и некоторой дополнительной мощности на высоких оборотах двигателя, то хорошей новостью будет то, что вам нужно будет делать оченьмало. Канал должен иметь малую площадь поперечного сечения, грубую текстуру поверхности и форму, обеспечивающую качество прохождении потока.Это, с возможным исключением последнего фактора, почти идеально описывает большинство впускных каналов промышленного нзготовления.

  Высококачествепная обработка клапанов с 3 углами может привести к значительному улучшению характеристик потока в канале при всех оборотах двигателя. Для большинства двигателей V8 ширина седла в 1,65 мм для впускного ив 1,78 - 1,91 мм для выпускного клапанов (угол наклона кромок — 45") обеспечивает оптимальный поток, уплотнение и отличную теплопередачу. Чтобы обеспечить охлаждение головок клапанов

  1. 30°;
  2. 45° (ширина кромки 1,65 мм);
  3. 60°;
  4. ширина 1,91 мм и угол 45°;
  5. обработанная кромка в 30°;
  6. фаска в 45°;
  7. кромка не уже;
  8. верхняя обработка — должна быть небольшой;
  9. впускной клапан;
  10. выпускной клапан.

  Однако, эти три важных параметра, улучшающих характеристики потока без заметного увеличения каналов, является жизненно важным, т. к. большое поперечное сечение ухудшает работу двигателя на низких оборотах, уменьшаететего мощность. Если вы сможете применить правильные "секреты" для достижения этого, то вы будете на один шаг ближе к созданию двигателя, хорошо работающего в обоих концах рабочего диапазона оборотов.

  Первый "секрет" улучшения потока часто пропускают или придают ему мало значения. Это является большой ошибкой, т. к. точная обработка клапана с 3 углами дает значительные улучшения характеристик потока при всех оборотах двигателя. Для большинства двигателей V8 ширина седла впускного клапана в 1,65 мм и выпускного клапана в 1,91 мм и угол 45° на обоих клапанах обеспечивает оптимальный поток, уплотнение и отличную теплопередачу для обеспечения охлаждения головок клапанов. Несмотря на распространенное обратное мнение, седла, более узкие, чем эти, не улучшают поток и могут привести к перегреву клапанов. В заключение, поток часто может быть еще более улучшен добавлением 30° (градусной) фаски на нижней стороне впускного клапана.

  Часто характеристики потока могут быт», улучшены, за счет добавления 30 -градусной фаски с нижней стороны впускных и выпускных клапанов:

  1. 30-градусная фиска;
  2. форма типичного впускного и выпускного клапана.

  Притирка клапанов и седел клапанов достаточно проста и на самом деле является таковой. Но если вы остановитесь на этом, то обманите сами себя, потеряв часть мощности. Относительно небольшие дополнительные усилия, затраченные на обработку канала, могут дать довольно значительную прибавку мощности. Точность в определении областей, форма которых должна быть скорректирована, составляет следующий секрет модификации впускных каналов.В первую очередь обработка должна производиться вокруг направляющей втулки клапана. Препятствия, имеющиеся здесь, могут ныть уменьшены иногда путем уменьшения высоты выступа и почти всегда — путем уменьшения ширины выступа. Хотя у равных двигателей имеются различные варианты конструкции, подобные модификации могут улучшить характеристики почти всех заводских головок блока цилиндров.

  Система впуска рабочей смеси, которая обеспечивает широкий диапазон крутящего момента, не будет существенно ограничивать поток топли-вовоздушноп смеси из карбюратора (карбюраторы будут обсуждены в одной из следующих глав) и не позволит потоку смеси потерять свою скорость из-за больших поперечных сечений в каналах. Канал форсированного двигателя должен иметь минимальную площадь поперечных сечений, согласующуюся с максимальным потоком смеси; другими словами, материал нужно убрать только из тех областей, которые заметно ограничивают прохождение потока. Если области с небольшим ограничением объема и скорости потока во впускных каналах будут увеличены путем чрезмерной сошлифовки, то результатом этого может стать уменьшение мощности. Когда работа сделана правильно, то измерения обнаружат,-что объем и скорость воздуха, двигающегося через все участки канала, будут выше, чем у стандартной головки блока.

   Второе серьезное препятствие для потока находится в области седла клапана. Часто оно представляет собой характерный выступ, остающийся чуть ниже седла клапана после обработки головки на заводе. Эта область должна обеспечивать плавный переход потока вокруг клапана. Тщательная работа в области камеры сгорания и седла клапана даст наибольшее улучшение в характеристиках потока в канале, что окупает затраты времени.На различных типах двигателей, включая "Шевроле", увеличение входного отверстия канала до максимального размера, ограниченного положениями отверстий для толкателей, является популярным занятием у многих конструкторов-любителей при обработке головки. Однако наиболее критичной областью для общего потока является не входное отверстие канала, а места рядом с седлами клапанов. Поток через основной корпус канала обычно имеет относительно свободный путь, но прохождение мимо клапанов и попадание в камеру сгорания - это совсем другое дело. Хотя стендовые испытания и обнаруживают, что небольшие различия между разными формами каналов могут дать заметный эффект по потоку, подобные модификации применяются почти на всех двигателях и они базируются на старом правиле: металл удаляется из областей, которые существенно ограничивают воздушный поток.Удаляйте металл только из тех областей, которые препятствуют воздушному потоку. Форма входного отверстия указывает, что воздушный поток в нижней части отверстия минимален, так что эта область не была увеличена.

  Первое препятствие часто располагается вокруг выступающей части направляющей втулки клапана. Это препятствие может быть иногда уменьшено путем уменьшения высоты и почти всегда — ширины выступа направляющей втулки. Второе серьезное препятствие потоку находится в области седла клапана. Переход от области до седла клапана к области после седла клапана должен быть плавным, а часто имеет место противоположное явление, причиной чего является характерный выступ, остающийся после выхода головки блока с завода, ее обработки чуть ниже седла клапана. Тщательная работа в областях камеры сгорания и седел клапанов по отношению к затраченному времени даст самое большое улучшение в характеристиках потока.

Больше поток — больше мощность

Максимальные характеристики

    Здесь можно дать некоторый дешевый совет (особенно по сравнению с тем, что вы заплатите за головки). Гоночные головки сконструированы для получения мощности с помощью распределительных валов, предназначенных для подъема клапанов на 17,8 мм или более. Понятно, что скорость в канале с низким подъемом клапанов заслуживает отдельного внимания. Если вы используете только такой распределительный вал, который поднимает клапаны на величину 15,2мм, то, вероятно, ваши деньги пропадут даром.

  Наука о головках блока цилиндров стала очень сложной и не дает однозначного ответа на то, как можно модифицировать впускной и выпускной каналы для получения дополнительных преимуществ от потока смеси. Однако каналы этого типа при необходимости являются достаточно большими по площади поперечного сечения и по объему и работают лучше с профилями гоночных распределительных валов, обеспечивающими высокий подъем клапанов. Вы можете достичь многого, потратив большие суммы денег при решении этой проблемы, но имейте в ввиду, что когда дело идет к модификации канала, имеется четкая граница между практичным и непрактичным. Относительно легко оптимизировать большинство впускных клапанов для работы с распределительным валами, которые обеспечивают подъем клапанов примерно в 14,0 мм. Однако, двигатель "требует" большего от канала, когда используется распределительные валы с более высокой продолжительностью такта впуска и большим подъемом клапанов и количества усилий (и денег), которые потребуются, чтобы удовлетворить этим требованиям и реализовать отдачу потенциальной мощности от головок блока, может быть таким же, как и при подготовке ракеты к старту. Давайте рассмотрим общий пример возрастания затрат, используя в качестве примера блок цилиндров "шевроле", хотя то же самое можно легко применить по многим другим форсированным двигателям. Большинство изготовителей головок обычно будут расширять входное отверстие канала как можно больше, чтобы улучшить характеристику потока, а ограничивающим фактором будет расположение отверстий для толкателей клапанов по обеим сторонам отверстий каналов. Однако когда поток играет главную роль, толкатели должны быть сдвинуты с пути, заглушив отверстие и просверлив новые. На первый взгляд это звучит просто, но когда вы рассмотрите то, что теперь будет необходимо для изменения конструкции рычагов коромысла и почти всех деталей, которые находятся рядом, становится очевидным, что это модификация не будет дешевой. Более того, после всех вложений вы будете иметь канал, поток через который будет лишь немного больше и дополнительный поток будет получен при необычно высоком подъеме клапанов. Другими словами, хотя этот тип модификации необходим для гоночных автомобилей большого класса, но он очень не практичен и не нужен для форсированных двигателей для обычных автомобилей. Для освещения перспективы приведем здесь некоторые общие правила, которые помогут вам подобрать правильную комбинацию головки блока и распределительного вала для следующего вашего форсированного или гоночного двигателя.

Подъем клапана

  Подъем клапана — это просто величина перемещения, передаваемого кулачком распредвала. Данные по подъему можно перепутать, так как коромысло умножают действительный подъем клапана в соотношении примерно от 1:1,5 до 1:1,7. Большинство фирм-производителей распредвала указывают "чистые" данные подъема клапанов, которые представляют собой максимальные величины подъема (перемещения), которые имеют место на клапане. Действительный подъем кулачка, измеряемый на рас-предвале, заметно меньше чем "чистый" подъем клапана.

  Оптимизация канала по потоку при подъеме клапанов является наиболее практичной для ваших будущих приложений. Толкатель форсированного двигателя со стандартным коромыслом должен ограничивать подъем клапана примерно до 12,7 мм (даже при этом относительно умеренном подъеме бронзовые направляющие втулки клапанов будут необходимы для уменьшения износа и обеспечения оптимального срока службы седла клапана). Если вы позволите себе использовать роликовые коромысла (ракеты), то может быть возможным увеличить практический подъем клапанов до величины 14,0 мм, т. к. роликовые коромысла приводят к меньшим боковым нагрузкам на стержень клапана и на направляющие втулки. Форсированные и гоночные двигатели могут успешно работать при подъеме клапанов до 15 мм, хотя срок службы направляющих втулок и клапанов будет меньше. Двигатели для кольцевых и внедорожных гонок используют величину подъема клапанов в 16,5 мм. Все двигатели автомобилей-дрегсте-ров используют величину подъема клапанов от 17,8 до 21,6 мм, но механизм привода клапанов и впускные каналы сконструированы для отдачи мощности при очень высоких оборотах двигателя и на очень короткий период времени (с расчетным временем работы несколько минут или часов, а не сотни и тысячи километров).

Продолжительность открывания клапана

  Продолжительность открывания указывает, сколько времени клапан остается открытым и измеряется в градусах поворота коленчатого вала (помните, что распредвал вращается в 2 раза медленнее коленчатого вала). Высокая продолжительность открывания увеличивает мощность на высоких оборотах ценой экономичности, увеличения токсичности выхлопных газов и мощности на низких оборотах. Сравнение продолжительности открывания клапанов различных рас-предвалов сложно, так как разные фирмы-производители используют разные методы измерений. Некоторые фирмы измеряют продолжительность открывания от точного момента, когда клапан отходит от своего седла. Это дает более высокие значения, но на практике топливовоздушная смесь не начинает поступать в нужной мере до тех пор, пока клапан не поднимется на определенную величину. На этом поперечном сечении распредвала показаны подъем клапана, продолжительность открывания клапана, перекрытие клапанов и угол между центрами кулачков.

  1. угол между центрами кулачков;
  2. перекрытие клапанов;
  3. продолжительность открывания клапана;
  4. выпускной клапан закрывается;
  5. подъем клапана;
  6. впускной клапан открывается;
  7. впускной клапан закрывается;
  8. выпускной клапан открывается.

Каждая часть распредвала имеет свое назначение:

  1. выступ;
  2. профиль кулачка;
  3. ведущий профиль кулачка;
  4. основная окружность кулачка;
  5. направление вращения распредвала;
  6. основание или пята кулачка.

  Тогда как смещенные толкатели и специальная геометрия коромысел могут быть необходимы для гоночных двигателей в свободном классе, эти серьезные (и дорогие) модификации большей частью не имеют смысла в обычных форсированных двигателях для повседневного использования. Каналы эг.юго типа могут помочь выдать практически ценную мощность на форсированных двигателях, чем более "спокойная " конструкция.Большинство специалистов по распредвалам договорились измерять продолжительность подъема между началом и концом, когда подъем равен 1,27 мм. При этом методе измерений получаются меньшие значения, которые больше соответствуют характеристикам потока. Для обычных применений продолжительность открывания около 230° (измеряемая при подъеме клапана в 1,25 мм) работает хорошо. Убедитесь, что вам известно, как измерялась продолжительность открывания при сравнении характеристик различных распредвалов.

  Перекрытие клапанов

  Перекрытие клапанов соответствует углу поворота коленвала (в градусах), при котором и впускной и выпускной каналы открыты. Подобно продолжительности открывания, длительное перекрытие также увеличивает мощность на высоких оборотах, но ценой экономичности, ухудшения состава выхлопных газов и мощности на низких оборотах. Два фактора влияют на данные по перекрытию клапанов.

Первый и очевидный — это величина продолжительности открывания клапанов.

Второй — это угол между центральными линиями кулачков или смещение кулачков друг относительно друга на распредвалу.

Другие факторы

 Угол между центрами кулачков опосредовано изменяется с перекрытием клапанов. Это означает, что при увеличении перекрытия клапанов угол между центрами кулачков уменьшается и наоборот. Увеличение угла обычно увеличивает крутящий момент на низких оборотах, а уменьшение угла улучшает мощность на высоких оборотах. Другой областью конструкции, которая влияет на характеристики распредвала, является профиль кулачка. Скорость подъема клапана, ускорение при подъеме и скорость закрывания клапана определяются формой кулачков и влияют на работу двигателя. При более быстром открывании и закрывании клапанов может быть получен больший поток смеси при данной величине продолжительности открывания клапана. Распределительные валы и детали механизма привода клапанов должны подбираться друг к другу для правильной совместной работы. Вдобавок к этому нужно тщательно подбирать распредвал/детали клапанного механизма к другим деталям, используемым в двигателе и в автомобиле, особенно деталям впускной и выпускной системы, а также трансмиссии.

  Распредвал является механическим "мозгом" двигателя. Он определяет, когда и как быстро клапаны будут открываться и закрываться, а также как долго они остаются открытыми под действием толкателей клапанов и эллиптических кулачков распредвала при его вращении.

  Распредвал, более чем любая другая деталь определяет рабочие характеристики (или индивидуальность) двигателя. Простая конструкция коленвала не может обеспечивать максимальную мощность двигателя от холостого хода до предельных оборотов. Как и все другие детали автомобиля, конструкция распредвала является компромиссом. Если распредвал не предназначен для эффективного крутящего момента на низких оборотах, приемистости и экономичности, то, в противовес этому, он должен дать высокую мощность на высоких оборотах. И наоборот, распредвалы предназначенные для работы на низких оборотах, плохо работают на высоких оборотах. Напомним еще раз: перед обработкой впускных каналов машинкой примите практическое решение относительно подъема клапанов, а затем конструируйте каналы, чтобы обеспечить как можно больший поток смеси при данном подъеме. Точное решение того, как добиться этой цели, часто требует дополнительных затрат времени для проведения стендовых испытаний или постоянных консультаций со специалистами по приготовлению и доводке головок блока цилиндров. В практических пределах, как указано выше, подберите распределительный вал, который открывает клапаны на величину достаточную для того, чтобы впускной канал пропускал поток как можно лучше.

  Например, если канал хорошо пропускает поток при подъеме клапана 14 мм, но поток спадает при более высоких значениях подъема, не устанавливайте распределительный вал, который открывает клапаны более чем на 16,5мм. Клапаны затрачивают очень малое время, находясь около точки, соответствующей оптимальному потоку, а направляющие втулки и пружины клапанов и коромысла будут изнашиваться быстрее. У большинства фирм-производителей распредвалов имеются технические отделы, которые помогают конструкторам определить наилучший рас-предвал и другие детали для каждого конкретного применения. Если у вас тяжелый автомобиль с относительно небольшим двигателем, то нужно быть осторожным при подборе распредвала и других деталей. Следуйте рекомендациям производителей распредвалов; они имеют большой опыт исследований и испытаний. Изменение фаз газораспределения на распредвале может привести к взаимным помехам в работе клапанов и поршней, при установке распредвала с измененными характеристиками нужно проверять следующее.

Изгиб витков клапанных пружин

 Когда устанавливается распредвал с увеличенным по сравнению со стандартным подъемом клапанов, нужно проверить клапанные пружины на наличие изгиба витков. Из-за увеличенного хода витки клапанных пружин могут столкнуться друг с другом, что может стать причиной серьезных повреждений. Проведи те эту проверку, когда установлен новый распредвал и толкатели, а клапанные крышки сняты. Головки блока цилиндров, коромысла и штанги должны быть на месте и правильно отрегулированы. Надев накидную головку с'воротком на передний болт коленвала внутри его шкива, проверните коленвал на два полных оборота. Когда клапан полностью открыт (клапанная пружина сжата), попробуйте вдвинуть плоский щуп толщиной 0,25 мм между соседними витками пружины. Он должен проходить через каждые 2-3 витка. Если какая-либо пружина изогнута, сразу же остановитесь и проверните коленвал в обратном направлении. Затем определите причину неисправности. Обычно клапанные пружины нужно заменять специально рассчитанными пружинами для конкретного распредвала.

  Для проверки деформации витков клапанных пружин воспользуйтесь плоскими щупами.Зазор между креплением пружины и направляющей втулкой клапана Иногда распредвалы с большим значением подъема клапанов становятся причиной того, что крепления клапанной пружины могут столкнуться с направляющей втулкой клапана. Для проверки этого проверните коленвал, как описано выше и проверьте, не мешают ли направляющая втулка клапана и крепление пружины друг другу. Зазор между ними — 1,6мм и более.

  Бронзовые направляющие втулки, изготовленные фирмой А. Р. Т., снабжены тефлоновыми уплотнениями. В большинстве случаев уплотнении могут потребоваться только на впускных клапанах, так как высокое в выпускной системе удерживает масло от попадания в каналы. Однако некоторые представители двигателей используют уплотнения зонтичного типа для уменьшения вероятности попадания масла в выпускные каналы.

Зазор от поршня до клапана

  Снимите головку блока цилиндров и прилепите слой пластилина к головке поршня. Временно установите головку блока цилиндров со старой прокладкой и затяните болты. Установите и отрегулируйте коромысла и штанги на проверяемый цилиндр. Проверните коленвал на два полных оборота. Снимите головку блока цилиндров и, проткнув слой пластилина в самом тонком месте, измерьте толщину этого слоя. Она должна быть не менее 2 мм для впускного клапана и не менее 2,5 мм для выпускного клапана. Если зазор близок к минимально допустимому значению, то проверьте каждый цилиндр, чтобы быть уверенным в том, что разброс в параметрах деталей не приведет к контакту поршня и клапанаПроверьте, не мешают ли друг другу направляющая втулка клапана и крепление пружины. 1 — зазор должен составлять от 1,6 до 3,2 мм.Прилепите слой пластилина к головке поршня в том .месте, где клапаны подходят к поршню ближе всего. После сжатия пластилина проткните его слой в самом топком месте и измерьте его толщину.

Советы по работе

  Если у вас нет доступа к стенду для измерения характеристик потока, то модификация запутанных форм в каналах головки блока превратится в слепой поиск. Если вы располагаете средствами, то возьмите головку блока, четко представляя себе свои конкретные планы, и обратитесь в мастерскую по ремонту и доводке головок. С другой стороны, если у вас нет денег для обращения в мастерскую, то следуйте приведенным ниже правилам. Они не являются непогрешимыми, но их надо иметь в виду и придерживаться в работе:

• Удалить металл с верхней части канала и вокруг выступа направляющей втулки клапана. Они часто являются областями с наивысшей скоростью потока, и уменьшение препятствий здесь может заметно улучшить мощность лишь с небольшим ухудшением крутящего момента на низких оборотах и топливной экономичности.

• Сглаживайте все изгибы и особенное внимание уделяйте наиболее важным областям, в частности, переходу канала к седлу клапана. Тщательно сглаживайте эти поверхности по плавному радиусу, не удаляя избыточный металл.

• Не удаляйте металл с нижней части канала. Нижняя часть «пол» канала является областью замедленного потока, и удаление металла оттуда увеличит площадь поперечного сечения канала. Это уменьшит крутящий момент на низких оборотах с очень небольшим (в лучшем случае) улучшением характеристик потока и максимальной мощности.

• Производите зачистку шершавой поверхности на стенках канала. Проверки на стендах показали, что это применимо во всех случаях.

• Обработайте клапаны как можно лучше, т. к. это очень критично. Седла клапанов должны быть правильной ширины, с правильными углами и практически идеально круглыми. Убедитесь, что используется 30-градусная фаска сверху для 'помощи' потоку при его попадании в камеру сгорания.

• Как правило, не устанавливайте клапаны в форме 'тюльпана' в двигатель с клинообразными камерами сгорания; они дают улучшение потока только в двигателях с четырьмя клапанами на цилиндр или со сферическими камерами сгорания. Оставьте клапаны, близкие по форме к исходным; обычно они имеют, плоскую нижнюю сторону с малым радиусом в месте перехода к стержню клапана.

• Удалите острые углы с нижней стороны клапана и сделайте там фаску в 30°.

• Установите бронзовые направляющие втулки клапанов и рассмотрите вариант использования клапанов со стержнями из твердого хрома. Это обеспечит минимальный износ направляющих втулок и стержней клапанов и продлит срок службы клапанов и седел.

Основные правила при работе с каналами и клапанами

• Удаляйте металл с верхней части канала и вокруг выступов направляющих втулок, но не 'опускайте' пол канала и не увеличивайте другие области с низкой скоростью потока.

  1. впускной канал;
  2. область замедления потока;
  3. выпускной канал.

• Сглаживайте все изгибы, особенно в месте перехода канала в седло клапана. Типичный радиус на короткой стороне в 0,13 - 0,38 мм (обрыв края на прямом участке) и на длинной стороне в 1,5-5,1 мм обеспечивают наилучшие характеристики потока.

  1. нижняя фаска;
  2. седло клапана;
  3. верхняя фаска;
  4. радиус на длинной стороне;
  5. выступ направляющей втулка клапана;
  6. радиус короткой стороны;
  7. радиус тыльной стороны;
  8. задняя фаска;
  9. фаска;
  10. кромка.

 • Поддерживайте контуры и изгибы канала для оптимизации движения части потока по направлению к центру цилиндра. Это обычно требует таких несимметричных выступов направляющих втулок клапанов и такой формы верхней части канала, как показано здесь на примере выпускных клапанов головки двигателя MOPAR рабочим объемом 5572 см3.

• Обработка (зачистка) грубой поверхности поможет предотвратить конденсацию топлива на стенках канала, не ухудшая поток, и для нее требуется намного меньше времени, чем на полировку.

• Сделайте как можно лучшую обработку клапанов и добавьте 30° фаску на верхней части седла и на задней части клапана. 45°-ные седла должны иметь ширину примерно 1,65 мм для впускных клапанов и примерно 1,91 мм для выпускных клапанов.

  1. 14-30" фаска шириной 0,76 мм;
  2. 15-45° седло шириной 1,65 мм для впускного и 1,91 мм для выпускного канала;
  3. 16-60° верхняя фаска шириной 2,5 мм.

• Хотя поток часто улучшается при использовании клапанов в форме тюльпана па головках со сферическими камерами сгорания и каналами в ряд, на двигателях с клинообразными камерами сгорания используйте только клапаны с плоской обычной стороной.

• Удаляйте все острые края с нижней стороны клапанов, добавив нижнюю фаску с углом от 30° до 35°.

Направляющие втулки и седла клапанов

  Увеличенный износ направляющих втулок клапанов может быть проблемой для распределительных валов с большим подъемом клапанов. Даже если двигатель оснащается более "спокойным" распределительным валом, износ направляющих втулок может по-прежнему оставаться проблемой. Когда зазор в направляющей втулке увеличивается, клапаны могут располагаться на седле неравномерно и могут образоваться утечки, что приведет к "утечкам" мощности из камеры сгорания. Изношенные втулки могут также привести к попаданию масла в цилиндры. Когда масло смешивается с рабочей смесью, оно снижает октановое число топлива и находящееся в камере сгорания топливо будет уже ниже по октановому числу, загрязнение маслом увеличит шанс возникновения детонации, особенно при высоких степенях сжатия. Лучшей профилактикой износа направляющих втулок будет установка бронзовых направляющих втулок или бронзовых вставок. Если это сделано правильно, то они надолго "переживут" втулки из чугуна. Тогда как бронзовые втулки лишь не намного дороже, их установка является разумным вложением средств, т. к. в дополнение к уменьшению зазоров клапан - втулка, они выдерживают недостаток смазки. И если вы хотите достичь высоких характеристик двигателя, то используйте бронзовые втулки.

  Когда установлены бронзовые направляющие втулки и стабилизирован зазор в них, внимание нужно переключить на сальники (маслоотражательные колпачки) клапанов. Многие промышленные головки блока цилиндров не используют положительные качества сальников стержней клапанов; вместо этого они могут использовать уплотнения зонтичного типа, которые препятствуют попаданию избыточного масла на стержни клапанов или же они могут не использовать сальники вообще. Отсутствие сальников — это более чем смелый шаг фирмы-производителя. Чугунные направляющие втулки нуждаются в обильной смазке, фактически они требуют намного больше, чем обычно получают. Если они смазываются достаточно для уменьшения износа, избыточное масло будет попадать в камеры сгорания. Однако, бронзовые направляющие втулки требуют намного меньше смазки и из-за этого можно использовать эффективные сальники (как минимум, на впускных клапанах) и добиваться малых зазоров в направляющих втулках — все это улучшит уплотнение клапанов, работу двигателя и даже увеличит срок службы втулок.

  Если вы используете бронзовые направляющие втулки, то приобретите лучшие сальники клапанов, которые можно приобрести. Установка таких сальников часто требует обработки, но в большинстве случаев сальники могут потребоваться только на впускных клапанах. Масло не стремится попасть в направляющие втулки выпускных клапанов из-за высокого давления в выпускной системе. Но даже в этом случае некоторые копст-•рукторы двигателей используют принудительное уплотнение (сальники) на впускных клапанах, и в качестве дополнительной меры, — сальники зонтичного типа на выпускных клапанах для уменьшения попадания масла в каналы.При использовании неэтилированного топлива не обеспечивается достаточная "смазка " клапанов и седел. что часто становится причиной эрозии седла под действием клапана. Головка блока цилиндров двигателя "Крайслер"объемом 7210см', показанная здесь, иллюстрирует экстремальный случай выемки (эрозии) седла. Седло клапана ииюшеио более чем ни 25 мм внутрь головки блока и в таких случаях единственно возможным решением будет установка твердых седел клапанов.Если клапаны изношены и нуждаются в замене, рассмотрите использование для замены клапанов, которыеимеют хромированные стержни — вы существенно увеличите срок службы направляющей втулки и клапана. Хромированные стержни клапанов работают особенно хорошо с бронзовыми втулками и могут быть использованы с зазором, близким к нулю, т. к. хром и бронза имеют очень мало шансов быть "прихваченными" друг к другу. Хромированные стержни клапанов и бронзовые направляющие втулки часто работа ют на протяжении более 150 000 км без заметного износа. В заключение, если вы не используете бронзовые направляющие втулки, обратите внимание пп марки сталей, используемых для производства клапанов, особенно нержавеющие стали, т. к. они не очень сочетаются с чугунными втулками. Бронзовые направляющие втулки, однако, совместимы практически со «семи широко используемыми материалами для стержней клапанов и проявляют' хорошие характеристики по сопротивляемости износу, работая совместно с такими материалами. Выемки у седел — другая причина для использования бронзы

    Одной из неисправностей головки блока, о которой почти только и слышали несколько лет, являются выемки у седел выпускных клапанов. В прошлом свинцовые соединения, добавляемые в бензин, обеспечивали качественную "смазку", которая эффективно противостояла эрозии седел выпускных клапанов. В наши дни состав бензина не обеспечивает необходимую смазку клапанов и седел. Выемки, образующиеся у седел, являются вполне реальной проблемой. Эрозия возникает не только из-за использования неэтилированного бензина, но и из-за высоких рабочих температур выпускных клапанов и зазоров в направляющих втулках. Если температуры клапанов являются высокими, то температуры седел клапанов также будут высокими, (из-за того, что большая часть тепла, поглощенного выпускными клапанами, передается седлам), а при высоких температурах чугун становится менее устойчивым к постоянным ударам от работающих клапанов. Эта проблема усиливается из-за ослабления клапанов в направляющих втулках, так как контакт стержня клапана с втулкой происходит по-другому и клапан рассеивает тепло иначе. Более того, ослабленные втулки приводят к тому, что клапан садится в седло в неправильном положении, что ускоряет эрозию. Становится очевидным, что имеется другая важная причина для использования бронзовых направляющих втулок. Бронза имеет отличные характеристики противостояния износу и допускает работу с малыми зазорами. В дополнение к этому, сама бронза имеет улучшенные характеристики теплопередачи по сравнению с чугуном. Таким образом, когда используются бронзовые направляющие втулки, от клапанов отводится больше тепла в систему охлаждения.

Размер впускных клапанов

  Установка увеличенных впускных клапанов часто может быть другим путем для увеличения потока в канале и мощности двигателя. Однако, кроме недостаточного зазора между клапанами имеется несколько дополнительных "ловушек" для работы двигателей автомобилей "хот-род" при попытке осуществления этой кажущейся очевидной модификации.

  Наиболее серьезной непредвиденной проблемой является то, что большой впускной клапан может находиться очень близко к краю стенки цилиндра или к камере сгорания. Близость этих поверхностей к головке клапана увеличивает помехи потоку и обычно уменьшает поток. Однако это не является уникальной проблемой. Практически все двигатели с вертикальным расположением в некоторой степени подвержены этой проблеме и это всегда имеет отрицательное действие на поток при среднем и большом подъеме клапана. При очень высоком подъеме, однако, головка клапана движется достаточно далеко от потока, т. е. не оказывает потоку сильного сопротивления. Когда устанавливаются клапаны большего размера, то выступание клапана часто может быть уменьшено путем обработки камеры сгорания или верхней части отверстия цилиндра. Если выступание не уменьшается до уровня, который имеется у клапана оригинального размера, то увеличения потока может не быть или оно будет малым, а в некоторых случаях большие клапаны могут даже уменьшить поток при низком и среднем подъеме клапанов.

  Улучшение характеристик потока при использовании клапанов большого размера возможны, если уменьшить выступание клапанов и добиться правильной геометрии седла клапана. Улучшения часто будут небольшими при низком подъеме клапанов, но в некоторых случаях (когда выступание не является проблемой) поток также улучшается при средних и высоких значениях подъема клапанов. Когда поток при низком подъеме увеличивается, это имеет тот же эффект, как и при использовании распределительного вала, который открывает клапан быстрее, таким образом, крутящий момент двигателя улучшается, особенно у двигателей, использующих распределительные валы с малой продолжительностью такта впуска. Однако основное преимущество здесь состоит в том, что клапан большего размера не увеличивает нагрузки на механизм привода клапанов (так как работают валы с высокими скоростями срабатывания толкателей клапанов).Если выступание клапана не уменьшается, когда устанавливаются большие клапаны, то увеличение потока будет малым или его вообще может не быть, а в некоторых случаях (например, как показано здесь), клапаны большего размера могут действительно уменьшить поток при низком и среднем подъеме клапанов.Другой причиной для использования впускных клапанов большего размера является то, что любые улучшения мощности не обязательно сопровождаются заметными потерями в других областях. Однако получение таких преимуществ на некоторых головках блока требует большего, чем простое уменьшение выступания клапанов. Эти случаи влекут за собой потери большого количества времени, затрачиваемого на модификацию. Первым примером этого являются ранние головки для форсированных двигателей "Шевроле", которые используют впускные клапаны диаметром 49,1 мм. Установка увеличенных клапанов "Шевроле" диаметром 51,3 мм без каких-либо других изменений уменьшит поток. Потребуется значительное число небольших модификаций в камере сгорания и во впускных каналах для получения требуемого увеличения потока; и это не просто вопрос обработки (сошлнфовки), а определения того, где и сколько чего снять.

  К сожалению, мы не можем дать вам в этом случае несколько общих указаний. "Выглаживание" канала и обработка окружающих деталей срабатывает довольно редко. Даже опытный специалист по головкам блока затрачивает много времени на измерения и o6pa6otKV, чтобы добиться потока, который "прячется" в изгибах головки. Конечно, чем больше стендовых испытаний проводится в процессе работы, тем лучше будет результат, но при окончательном анализе использование испытательного стенда определит эффективность обработки.Хороший поток при низком подъеме клапанов обеспечивает интенсивный разгон и хорошую приемистость в движении. Впускные клапаны увеличенного размера являются одним из путей получения этих преимуществ. Эти головки блока двигатели "Крайслер " имеют камеры сгорания, в которые установлены впускные клапаны диаметром, близким к 55,9 мм.

  При окончательном анализе, хороший поток при низком подъеме клапанов необходим для двигателя, чтобы обеспечить интенсивный разгон и хорошую приемистость. Так как впускные клапаны большего размера могут улучшить поток при низком подъеме клапанов и работают надежно, хотя часто и недешевы, в большинстве случаев они предлагают привлекательный и практический путь для повышения мощности.

Выпускной канал и размер клапанов

  Одним из самых легких путей потери мощности форсированного или гоночного двигателя является использование выпускной системы с ограниченной пропускной способностью. Слово "система" в данном случае относится ко всей длине выпускного тракта, от выпускного клапана до конца выхлопной трубы. Любое сопротивление па этом пути уменьшает мощность и экономичность двигателя. Любое обратное давление в системе надавливает на поршень, когда он идет вверх при такте выпуска. Это давление вниз на поршень делает отрицательную работу. Она вычитается из рабочего хода. С любой точки зрения, поток выхлопных газов из двигателя должен выходить как можно легче.

  Может казаться очевидным, что система с ограничениями ухудшит работу двигателя, но менее очевидно то, что плохо изготовленная система без глушителя для грузового автомобиля может также ухудшить мощность и топливную эффективность. Во многих случаях гонки на длинные дистанции могут быть выиграны благодаря меньшему количеству остановок для заправок и весу имеющегося в автомобиле топлива. В таких ситуациях максимальная экономия топлива непосредственно связана с эффективностью выпускной системы.

   Аналогично впускному каналу, модификации выпускного канала должны обеспечить высокую скорость потока и оптимизацию удаления отработанных газов из камеры сгорания при перекрытии клапанов. Удаление металла из областей максимальной скорости, не опускание пола канала, удаление препятствий около седел клапанов и уменьшение размера выступов направляющих втулок — все это является необходимыми факторами. Конструкция выпускной системы также играет заметную роль при получении оптимальной мощности, и следующая далее глава будет посвящена этому важному предмету. Однако, поток выхлопных газов начинается у выпускного клапана и канала, и конструкция выпускного канала должна обеспечивать минимальное сопротивление и соответствующую скорое и,, необходимые для удаления отработанных газов в период перекрытия клапанов. Практически все модификации впускного канала, обсуждаемые в предыдущих разделах, относятся и к выпускному каналу. Удаление металла из областей максимальной скорости, не опускание "пола" канала, удаление выступов около седел клапанов, уменьшение размеров направляющих втулок клапанов, установка бронзовых направляющих втулок и обеспечение точной работы клапанов — все эти меры являются необходимыми.

  Вдобавок к этому, установка выпускных клапанов большего размера может улучшить мощность двигателя. Но это может быть напрасной мерой, если размер клапана больше, чем в определенной пропорции от диаметра впускного канала. Звучит странно? Это фактор смещения потока, который является важным при конструировании и форсирования двигателя. Смещение потока: размеры впускных и выпускных клапанов

  Если вы разрабатываете головку блока цилиндров для получения максимальной мощности, то не будет никаким сюрпризом, что основной целью является максимальный поток. Это, кроме всего прочего, требует использования клапанов большего размера, которые могут быть физически установлены в камеры сгорания. Это требует решения, как лучше всего разделить имеющееся пространство между впускными и выпускными клапанами. Другими словами, что лучше: большой впускной и маленький выпускной клапан, оба клапана одинакового размера или большой выпускной и маленький впускной клапан? Прежде всего, можно подумать, что большой выпускной клапан — это тот путь, которым нужно идти; после всего отработанные газы, без сомнения, занимают больший объем, чем газы, втянутые в цилиндр через впускную систему. Однако, когда мы касаемся мощности, действует другое "железное" правило: легче опустошить цилиндр, чем наполнить его.

   Годы экспериментов показали, что оптимальный размер выпускного клапана должен составлять примерно около 75% от впускного или, если точнее, поток через него должен составлять примерно 75% потока через впускной клапан. Это правило применяется только тогда, когда диаметры комбинируемых клапанов равны общему имеющемуся пространству в камере, т. е. клапаны почти касаются друг друга, как часто бывает в гоночных двигателях. Если используются клапаны с размерами, меньшими, чем максимальные, а мощность не является основной целью, то баланс между потоками впускного и выпускного каналов не так критичен.

   Самое простое правило, которому нужно следовать: если основным требованием является мощность, то следуйте нормальному соотношению 0,75:1. Это правило можно изменить в тех случаях, когда двигатель оснащен системой турбонаддува или впрыска окиси азота. Для этих систем требуется обеспечение большего потока выхлопных газов и может успешно использоваться соотношение диаметров выпускного и впускного клапанов, составляющее 0,9:1 (поток выхлопных газов составляет 90% от потока впускаемой смеси) или даже больше.

  Хорошим примером того, что может быть сделано с выпускными клапанами, иллюстрирует головка блока двигателя CHVY 186 ("Шевроле"). Обычно эти головки оснащены выпускными клапанами диаметром 38,1 мм. Испытания на стенде показали, что увеличение диаметра выпускных клапанов до 42,7 мм и неизменность размера впускного клапана поможет увеличению мощности и топливной эффективности.

  К сожалению, установка увеличенных выпускных клапанов имеет "ловушку", которая обычно не связана с увеличением размеров впускных клапанов. Водяная рубашка внутри головки блока цилиндров расположена рядом с седлами выпускных клапанов. Это помогает поддерживать клапаны и седла холодными, но часто препятствует установке клапанов максимального размера. Вдобавок, тонкие отливки и большое количество тепла (побочный продукт высокой мощности) могут привести к образованию трещин в седлах, и это обычно укорачивает срок службы головки блока.

   Замечание. Когда главной целью конструктора, является экономия, а не мощность, размер выпускного клапана может быть увеличен до соотношения 0,75:1 даже при увеличении дна-метра впускного клапана. Когда поток выпускного канала увеличивается, то пробег и срок службы двигателя будут улучшены. Однако здесь есть предел, как и во всем. Выпускные клапаны, размер которых превышает 90-95% от размера впускного клапана, даюг очень маленькую дополнительную топливную экономию, и так как они используют пространство, обычно отдаваемое впускным клапанам, то потенциал по мощности будет уменьшен.

   Установлено, что опустошить цилиндр легче, чем наполнить его. Это кардинальное правило диктует оптимальные размеры клапанов. Проверки показали, что у всех гоночных двигателей максимальная мощность будет получена тогда, когда размер выпускного клапана составляет примерно 0,75% от размера впускного клапана.

Камеры сгорания

  Большинство дискуссий, относящихся к типам камер сгорания, касается того, какой из них лучше для форсированного двигателя. Двумя основными типами, имеющимися в распоряжении для конструкторов двигателей, являются следующие:

• замкнутая или разделенная камера сгорания классической клиновидной формы, в которой камера не простирается на весь диаметр отверстия цилиндра на стороне свечи зажигания или закаленной стороне (противоположной) головки блока;

• открытая или неразделенная камера, — модифицированная версия клиновидной камеры, которая простирается на сторону свечи зажигания или закаленную (противоположную) сторону головки блока или, в некоторых случаях, в обе стороны до полного диаметра отверстия цилиндра.

   Для конструкторов двигателей имеются камеры сгорания двух обычных типов. Разделенная камера сгорания (вверху, двигатель "Шевроле ") представляет собой небольшую компактную камеру, которая не расширяется до отверстия цилиндра. Неразделенная камера (внизу, также двигатель "Шевроле ") расширяется на стороне свечи зажигания (на некоторых двигателях также и на другой стороне) до полного диаметра отверстия цилиндра.

  Изначально неразделенные камеры развивались по двум причинам:

• они минимизировали выступание клапанов на некоторых форсированных двигателях в начале и середине 60-х годов, но из-за ужесточения требований к токсичности выхлопных газов было установлено, что

• неразделенные камеры стремились уменьшить токсичные выбросы.

   Некоторые из испытанных двигателей со степенью сжатия 8,8:1 использовали поршни с выемкой, головки блока типа 186 с разделенными камерами сгорания промышленными карбюраторами. Многочисленные проверки показали, что двигатели выдавали на 20 л. с. больше, чем те же двигатели, но с головками блока с неразделенными камерами сгорания и с плоскими поршнями.

   Для повседневного использования на головках блока с неразделенными камерами сгорания редко бывает какое-либо увеличение потока и мощности. Фактически, головки с неразделенными камерами сгорания могут в чем-то уменьшить потенциал мощности, из-за того, что большие камеры меньше сопротивляются детонации.

   Эти головки с неразделенными камерами иногда можно узнать по их очень небольшой или вообще отсутствующей закаленной (противоположной свече зажигания) области.

   Некоторые головки блока, обычно известные как конструкции с разделенной камерой сгорания, в действительности являются головками с неразделенными камерами сгорания. Ранние конструкции включают в себя камеру, которая простирается до диаметра отверстия цилиндра па стороне свечи зажигания (классическая конструкция с неразделенной камерой сгорания). Но они часто считаются головками с разделенными камерами сгорания, т. к. поздние головки двигателей "Крайслер", обычно называемые головками с разделенными камерами, имеют выемку на противоположной стороне (от свечи), которая расширяет камеру до полного отверстия цилиндра. В этом случае более ранние "меньше разделенные" камеры считаются многими конструкторами двигателей "Крайслер" разделенными камерами.

  Неразделенные и разделенные камеры сгорания

   Несмотря на то, что головки с неразделенными камерами сгорания являются желательными для форсированных двигателей, головки с разделенными камерами часто являются вполне адекватным выбором вместе с распределительным валом особого профиля, пока не возникает избыточное выступание клапанов. Хотя многие головки с разделенными камерами "страдают" от увеличенного выступания клапанов, осторожная корректировка формы (и иногда это не требует сильной обработки) может уменьшить сильное выступание. Почему? Потому что слегка модифицированные головки блока могут часто обеспечить поток, сравнимый с головками с неразделенными камерами сгорания при подъеме клапанов величиной до 14,0 мм. Головки с неразделенными камерами сгорания, однако, имеют отдельные преимущества при сравнении, т. к. они стремятся уменьшить выступание клапанов при высоких значениях подъема клапанов, часто составляющего 17,8 мм. Однако для повседневного использования в головках с неразделенным и камерами сгорания редко имеется какое-либо увеличение потока (и мощности) Фактически, головки с неразделенными камерами могут в чем-то уменьшить потенциал мощности, т. к. камера большего размера меньше сопротивляется детонации.

   Головка с разделенными камерами сгорания имеет дополнительные преимущества. Компактная разделенная камера сгорания допускает использование относительно высокой степени сжатия (9:1 или более) без использования куполообразных поршней. Купол поршня уменьшает мощность, ограничивая распространение переднего фронта пламени в объеме камеры сгорания. Вы можете спросить: почему поршни с высокими куполами обычно используются в гоночных двигателях? Потери в эффективности сгорания из-за купола поршня компенсируются увеличением мощности, получаемой из-за очень высокой степени сжатия, часто составляющей 12,5:1 или даже больше. Это тот случай, когда "может это и неэлегантно, зато это работает".

   Двигатель автомобиля СORVETЕ ZR-1. Поршни с выемками и компактные камеры сгорания для уменьшения движения фронта пламени и детонации при оптимизации мощности.

Степень сжатия

   Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, па дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно: при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.

   Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).

1 — препятствия в системе впуска приводят к низкой динамической степени сжатия; 2 - высокая объемная эффективность (VE) приводит к высокой динамической степени сжатия.

   Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше, чем показанная в таблице. Это происходит оттого, что данные, показанные в таблице, базируются на механических степенях сжатия (т.е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки "упаковки" цилиндра (объемная эффективность выше 100%), как это предполагается некоторыми комбинациями 'впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси.

  Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты пли впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления/которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя.

  Приведенная далее таблица показывает увеличение мощности и крутящего момента при увеличении степени сжатия. Эта таблица базируется на данных по двигателю с распределительным валом, обеспечивающим относительно короткую продолжительность впуска.

  Найдите существующую степень сжатия в правой части таблицы. Выберите новую степень сжатия в левой части таблицы. Число в квадрате, где пересекутся соответствующие столбцы, будет равно ожидаемому увеличению мощности (в %). К примеру, если степень сжатия увеличивается с 9,0:1 до 12:1, то мощность увеличивается примерно на 4,5%. Прирост мощности будет немного больше, если продолжительность впуска будет больше.Некоторые комбинации впускного и выпускного коллекторов могут "упаковывать " цилиндр с положительным давлением (обеспечивание У Е более 100%). Так как это увеличивает динамическую степень сжатия, то оптимальная степень сжатия может быть низке, чем при использовании более консервативных систем впуска.

Недостатки высокой степени сжатия

 Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежное 11. двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, гак как цилиндр "упаковывается" смесью так как если бы работал невидимый нагнеатель.

   Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличим, степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общин объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя. Пример: типичный двигатель "Шевроле" Grand National 350 может использовать степень сжатия 12,5:1. Он также может иметь VE около 115%; таким образом, при оборотах динамическая степень сжатия будет заметно выше 12,5:1. Если увеличить статическую степень сжатия до 13,5:1 путем уменьшения объема камеры сгорания, то в объем цилиндра/камеры сгорания поступит меньше рабочей смеси, VE уменьшится и мощность, скорее всего, снизится.

   Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, го объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1639 см3, (т. е. 1639 см3 "выбранного" объема плюс 1639 см3 камеры сгорания равны 3278 см3 общего объема цилиндра). Даже при 3278 см3 во всем цилиндре двигатель может втянуть только 1639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненным объем поршня может работать для втягивания воздуха и топлива. Остальные 1639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.

  Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3278 см3 топливовоздушной смеси в цилиндр вместо исходных 1639 см3, которые двигатель мог "вдохнуть" в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3278 см3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со 1639 см3 до 1092 см3? Когда поршень находится в конце такта впуска, общин объем цилиндра будет теперь только 2731 см3. Если не изменять давление наддува, то оно может "вдавить" только 2731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из 17% потерь мощности.

   Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.

   Если на воображаемый двигатель объемом 1639 см3 со степенью сжатии 2,0:1, который втягивает 1639 см3 топливовоздучпюй смеси (в верху) установить наддув, то он теперь будет заполняться 3278 см3 смеси (в середине). Если степень сжатия увеличивается до 3,0:1 путем уменьшения объема камеры сгорания, то в двигатель будет поступать только 2731 см3 топливовоздушной смеси. Результатом будет уменьшение мощности (внизу), т. к. объемная эффективность уменьшилась на 17%

  1. 1639 см3;
  2. 1092 см3.

Степень сжатия и топливо

   Хотя верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, "обычные" форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатя может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

  Лучшим путем увеличения степени сжатия является увеличение диаметра отверстия цилиндра путем расточки блока цилиндров или выбором блока с отверстиями большего диаметра. Эта модернизация может увеличить степень сжатия, путем давления рабочего объема, уменьшая необходимость использования поршней с большими "куполами " или уменьшения объема камер

  Более высокая степень сжатия, конечно, требует использования высокооктанового топлива и часто имеющееся топливо имеет гораздо меньшее октановое число, чем хотелось бы многим. Имеются несколько путей обойти данную проблему. Если вы изготавливаете двигатель с "нуля" и желаете сберечь время, обратившись к инженеру с опытом изготовления форсированных двигателей, вы можете полу чить рекомендации по увеличению степени сжатия, приводящему к заметному росту мощности двигателя. В некоторых случаях двигатели со степенью сжатия порядка 11:1 успешно использовали бензин с октановым числом 87, но это требует подбора всех детален двигателя, особенно конструкции распределительного вала и головки-блока цилиндров плюс использование системы впрыска воды.

  Если вы выберете метод изготовления с "нуля", одним из самых легких путей увеличения степени сжатия является использование традиционных поршней для высокой степени сжатия, имеющих минимальную высоту куполообразной части, так что нет сильных помех распространению пламени. Если желаемая степень сжатия не может быть достигнута путем плавного увеличения куполообразной части п уменьшением объема камеры сгорания с помощью обработки головки блока (лучше угловая обработка). то лучшим путем для увеличения степени сжатия будет увеличение диаметра отверстия цилиндра, часто с помощью расточки блока. Выдерживая практические пределы для толщины стенок цилиндров (обычно допускается увеличение диаметра отверстия цилиндра не более чем на 0,75 - 1,0 мм), эта модификация может увеличить степень сжатия путем добавления рабочего объема, что уменьшает необходимость больших "куполов" у поршней или камер сгорания меньшего объема.

   Если проект вашего двигателя более "умеренный", то, возможно, будет достаточно обработки головки блока, а стоимость обработки головки составляет одну из самых дешевых операций по увеличению мощности и экономичности двигателя.

Потери тепла

   Сгорание топлива в камере сгорания двигателя генерирует тепло, которое расширяет продукты сгорания и "толкает" поршни вниз в отверстие цилиндра. Если тепло отводится от расширяющейся смеси перед тем, как она сможет полностью воздействовать на поршень, потенциальная мощность будет потеряна. Если можно было бы построить идеальный двигатель, то он использовал бы тепло сгорания для расширения рабочей смеси, и ничего бы не терялось из-за рассеяния тепла окружающими металлическими поверхностями. При этих условиях двигатель будет иметь максимальную термическую эффективность, а его выходная мощность будет почти в два раза больше, чем у обычного форсированного двигателя. Представьте себе: двигатель V8 рабочим объемом (4916 см3) с одним четырехкамерным карбюратором выдает мощность почти 800 л.с.! К сожалению, практически невозможно добиться термической эффективности, близкой к 100%. Одной из целей проекта любого двигателя должна быть максимальная термическая эффективность, т. к. она контролирует то, как двигатель преобразует энергию топлива в полезную мощность.

  Алюминиевые головки блока цилиндров отводят тепло от камер сгорания быстрее, чем чугунные. Но с другой стороны, алюминиевые головки "страдают" от нескольких горячих мест и имеют более низкие температуры поверхности.

Термическая эффективность и металлургия

  Имеется много путей улучшения термической эффективности. Некоторые являются незначительными и требуют серьезных исследований для их обнаружения, другие же являются очевидными.

     Тепловые характеристики металла, подвергаемого воздействию горящей топливовоздушной смеси в первую очередь в головке блока цилиндров, являются одним из путей. Алюминиевые головки блока являются более эффективными проводниками тепла, чем чугун, а мощность может быть заметно снижена из-за потерь тепла в водяной рубашке. Но с другой стороны, алюминиевая головка "страдает" от некоторых разогретых мест в камере сгорания и обычно имеет более низкие температуры поверхности. Эти последние факторы позволяют достичь более высокой степени сжатия при использовании алюминия и уменьшают чувствительность к детонации. Для двигателей с низкой степенью сжатия чугун является лучшей основой из-за его улучшенной тепловой эффективности.

Покрытия камер сгорания

  Степень прироста мощности от использования покрытий из тепловых барьеров зависит от конструкции головки, размера камеры сгорания и от материала головки (как уже говорилось, алюминий имеет лучшую теплопроводность и может получить больше преимуществ от изолирующих покрытий). Вообще говоря, обычным является прирост мощности порядка 3%. Также и прирост в экономии топлива при "полном дросселе" часто составляет около 3% с возможно большими улучшениями в экономичности при работе с частично открытой дроссельной заслонкой. Как было отмечено в прошлой главе, изолирующие покрытия на поршнях могут также улучшить термическую (тепловую) эффективность примерно на 4-8%.

   Таким образом, покрытие поршней и камер сгорания может улучшить мощность примерно на 10%. Однако, можно получить еще большую мощность (см. далее).

Клапаны и термостойкие покрытия

  Хотя поршни и камеры сгорания являются основными областями использования термостойких покрытий, покрытия могут быть использованы и для других менее очевидных областей. Покрытия могут быть использованы на впускных и выпускных клапанах для дальнейшего улучшения мощности и надежности двигателя. Обычно происходит так, что поступающая рабочая смесь отдает значительную часть тепла, когда проходит через впускной клапан. Покрытие передней поверхности впускного клапана может существенно уменьшить температуру на задней стороне клапана, улучшая тепловую эффективность и увеличивая мощность.

  Покрытия из термических барьеров, используемые в камерах сгорания, часто улучшают мощность и топливную экономичность при полностью открытой дроссельной заслонке примерно на 3%, а на алюминиевых головках возможен даже больший прирост. Изолирующие покрытии, используемые на поршнях, в камерах сгорания и на клапанах могут привести к увеличению мощности более чем на 10%. К сожалению, эти специальные покрытия довольно дороги.

  Более того, большинство проблем, связанных с клапанами, относятся к теплу и концентрируются вокруг очень горячих выпускных клапанов. Термостойкие покрытия уменьшают температуру головки клапана и, соответственно, потребность в широких седлах для выпускных клапанов. Покрытие на передней части выпускного клапана предотвращает то, что тепло от сгорания смеси достигнет клапана, тогда меньше тепла передастся на седло. В дополнение к этому, если покрытием защищена задняя сторона выпускного клапана (за исключением седла и стержня), то тепло, достигающее клапана, уменьшается еще больше. Эти модификации позволяют конструкторам концентрировать свое внимание на оптимизации ширины седла клапана для улучшения характеристик потока. Таким образом, в случае покрытия выпускных клапанов, изолирующий материал может не дать непосредственных результатов в увеличении мощности, но это допускает использование модификаций, которые могут улучшить характеристики двигателя.

  Покрытия из термических барьеров являются высокотехнологичными материалами, которые могут значительно снизить теплопроводность, несмотря на свою малую толщину (около 0,4 мм). Их использование в последние годы становится все более и более обычным, и нет сомнений в том, что они предлагают эффективный путь улучшения мощности двигателя.К сожалению, описываемые специальные покрытия являются относительно дорогими и редко используются на других двигателях, кроме профессиональных гоночных двигателей. На форсированных двигателях для повседневного использования, создание которых часто ограничивается финансовыми возможностями, указанные модификации вряд ли являются практичными. Многие другие модификации могут быть осуществлены в пределах разумного бюджета. Они являются менее дорогими и более эффективными, и в связи с этим можно найти возможность лучшего использования ограниченных финансовых ресурсов. Термостойкие покрытия должны рассматриваться только как последний" шаг при изготовлении дорогого двигателя.

Обработка камеры сгорания

  Если использование термостойких покрытий в камере сгорания не представляется возможным, то следующим полезным шагом может быть полировка поверхности камеры сгорания. Это уменьшит поверхность, благодаря удалению тысяч "закоулков и щелей", которые поглощают тепло. Это также уменьшит вероятность образования нагара, который служит причиной детонации. Однако следует иметь в виду, что полировка камер сгорания "открывает дверь" для потенциальных проблем. Имеется несколько вещей, о которых следует помнить:

• Не увеличивайте камеру сгорания больше, чем требуется. Увеличенная камера сгорания требует дополнительного распространения пламени и имеет большую поверхность, поглощающую тепло.

• Если вы хотите сделать больше, чем отполировать камеры сгорания, уберите только материал, который "вносит вклад" в выступание клапанов. Не пытайтесь изменять форму камер сгорания, пока не познакомитесь с тем, как сделанные вами модификации будут влиять на распространение пламени.

• Не жалейте времени, чтобы изменить объем всех камер сгорания перед началом работы, чтобы вы могли предпринять шаги для того, чтобы сделать объемы камер одинаковыми при их полировке. Просто уменьшение деталей камеры поможет увеличению малых камер сгорания, но помните, что на объем камеры оказывает большое влияние положение седел клапанов, поэтому "выравнивание" объемов камер нужно делать после обработки клапанов.

• Всегда обрабатывайте камеры, приняв меры для защиты клапанов и седел. Одно неосторожное движение полировочной головки может повредить седла клапанов.

Модификации камеры сгорания

• Камеры сгорания большего размера требуют большего времени для распространения пламени и имеют большую площадь поверхности, поглощающей тепло. Используйте меньшие камеры и не увеличнвайте камеры сгорания больше, чем это необходимо.

• Убирайте только материал, который увеличивает выступание клапанов. Сглаживайте все острые края, но не изменяйте форму камер сгорания. • Измерьте объем всех камер сгорания после обработки клапанов и удаления материала для уменьшения выступания клапанов, т. к. обе эти операции сильно влияют па окончательный объем камеры.

• Для защиты седел клапанов от повреждений всегда вставляйте пару имитаторов клапанов перед обработкой камеры сгорания.

Самостоятельная обработка головки блока — насколько это трудно?   Если у вас есть хотя бы средний опыт механика, высокоскоростная шлифовальная машинка и несколько шлифовальных головок, то самостоятельная обработка головки блока цилиндров может быть осуществлена даже за пару выходных дней. Модификации, которые можно сделать самостоятельно конечно не заменят обработку головки специалистами из специальной мастерской, но можно добиться существенного улучшения характеристик потока просто очисткой, сглаживанием и, в некоторой степени, изменением формы каналов.

Ожидаемые результаты

  Помните, что форма, а не полировка, является наиболее важным фактором. За возможным исключением некоторых камер сгорания, не расстраивайтесь, если вы сделали грубую обработку. Лучше позаботьтесь о том, чтобы воспроизвести правильную форму.

  Если вы намереваетесь изготовить форсированный двигатель и работаете в рамках ограниченных финансовых возможностей, то относительно простые модификации головки блока цилиндров могут обеспечить большие улучшения за разумную цену. Это, конечно, предполагает, что головки тщательно подготавливаются в соответствии с рекомендациями, содержащимися в этой книге.

  Если головка будет использована на нормальном верхнеклапанном двигателе, то хорошо сделанная обработка может часто улучшить характеристики примерно на 5 - 10%. В двигателе мощностью 300 л .с. может прибавиться 25 л. с. Возможен даже больший прирост, если используются другие тщательно подобранные детали, такие как соответствующий распределительный вал, впускной коллектор и карбюратор (или электронная система впрыска топлива), которые помогут обеспечить желаемый диапазон оборотов и вес двигателя, повышенную степень сжатия и т. д. В этих случаях тюнинг головки блока, выполненный вами в своем гараже, может улучшить мощность на 10% или даже больше.

  Если вы обладаете высокооборотной шлифовальной машинкой и несколькими шлифовальными головками или, что даже лучше, несколькими скребками, обработать солонку самостоятельно вполне возможно за выходные дни. Важно при этом помнить о воспроизведении правильной формы, не беспокоясь сильно о мелких недостатках полировки. Когда седла клапанов и области камер сгорания оптимизированы, следующим шагом является усовершенствование основной области канала. Рассмотрим для примера головку блока, подготавливаемую для повседневного использования, что поможет иллюстрировать правильные пути выполнения этой работы. Вариант этой головки для короткого блока "Шевроле" базируется на популярных и широко распространенных отливках для головок с номерами 186, 461 или 462 (три последние цифры номера на отливке головки). Отверстие впускного канала имеет не традиционную прямоугольную форму, как у промышленных и даже специальных головок, а форму трапеичи. Необычная форма, полученная из большого количества испытаний на стендах, указывает на то, что воздушный поток в нижней части канала (меньшее "дно" канала) минимален и поддерживает оптимальную скорость потока. Верхняя часть канала (широкая часть трапеции) является областью интенсивного потока, и увеличение этой области дает больше потока, согласованного со скоростью всего потока.Почти без исключения полировка стенок канала не дает особых преимуществ перед грубой необработанной поверхностью. Грубая обработка такой поверхности занимает всего лишь несколько минут работы и помогает удерживать топливо во взвешенном состоянии, особенно в областях малоподвижного потока.Следующим "секретом" является то, что гладкие поверхности канала не создают преимуществ по сравнению с шершавыми поверхностями. На стенде проверено достаточно много головок от гоночных двигателей для того, чтобы установить, что это правило, вероятно, применимо практически во всех случаях. Вдобавок, полировка впускного канала требует много усилий, тогда как относительно грубая обработка (осуществляемая бруском или шкуркой зернистостью 80-100) требует нескольких минут работы, а канал работает также хорошо, если не лучше, чем при полировке.По сравнению с промышленными впускными каналами модификации. описанные вышс,,часто дают увеличение мощности на 5-8%. В этом случае предполагается, что в выпускных каналах не было сделано никаких изменений. Подобные модификации на выпускных каналах приведут к увеличению мощности на 2-5% (общий прирост составит 7-9%)

Статьяпредоставлена www.stretresing.ru

Источник - http://vaz2101.ru


Комментариев пока нет.